skip to main content


Search for: All records

Creators/Authors contains: "Tabor, Neil"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Whitehorse Group and Quartermaster Formation are extensive red-bed terrestrial sequences representing the final episode of sedimentation in the Palo Duro Basin in north-central Texas, U.S.A. Regionally, these strata record the culmination of a long-term regression sequence beginning in the middle to late Permian. The Whitehorse Group includes beds of abundant laminated to massive red quartz siltstone to fine sandstone and rare dolomite, laminated to massive gypsum, and claystones, as well as diagenetic gypsum. The Quartermaster Formation exhibits a change from nearly equal amounts of thin planar and lenticular fine sandstone and laminated to massive mudstone in its lower half to overlying strata with coarser-grained, cross-bedded sandstones indicative of meandering channels up to 7 m deep and rare overbank mudstones. Paleosols are absent in the Upper Whitehorse Group and only poorly developed in the Quartermaster Formation. Volcanic ash-fall deposits (tuffs) present in uppermost Whitehorse Group and lower Quartermaster Formation strata permit correlation among five stratigraphic sections distributed over ∼150 km and provide geochronologic age information for these rocks. Both the Whitehorse Group and Quartermaster Formation have traditionally been assigned to the late Permian Ochoan (Changhsingian) stage, and workers assumed that the Permian-Triassic boundary is characterized by a regionally significant unconformity. Chemostratigraphic or biostratigraphic evidence for this age assignment, however, have been lacking to date. Single zircon U-Pb CA-TIMS analyses from at least two distinct volcanic ash fall layers in the lower Quartermaster Formation, which were identified and collected from five different localities across the Palo Duro Basin, yield interpreted depositional ages ranging from 252.19 ± 0.30 to 251.74 ± 0.28 Ma. Single zircon U-Pb CA-TIMS analyses of detrital zircons from sandstones located only a few meters beneath the top of the Quartermaster Formation yield a range of dates from Mesoproterozoic (1418 Ma) to Middle Triassic (244.5 Ma; Anisian), the latter of which is interpreted as a maximum depositional age, which is no older than Anisian, thus indicating the Permian-Triassic boundary to lie somewhere within the lower Quartermaster Formation/upper Whitehorse Group succession. Stable carbon isotope data from 180 samples of early-burial dolomicrite cements preserve a chemostratigraphic signal that is similar among sections, with a large ∼−8‰ negative isotope excursion ∼20 m beneath the Whitehorse Group-Quartermaster Formation boundary. This large negative carbon isotope excursion is interpreted to be the same excursion associated with the end-Permian extinction and this is in concert with the new high precision radioisotopic age data presented and the fact that the excursion lies within a normal polarity stratigraphic magnetozone. Dolomite cement δ 13 C values remain less negative (between about −5 and −8 permil) into the lower part of the Quartermaster Formation before becoming more positive toward the top of the section. This long interval of negative δ 13 C values in the Quartermaster Formation is interpreted to represent the earliest Triassic (Induan) inception of biotic and ecosystem “recovery.” Oxygen isotope values of dolomicrite cements show a progressive trend toward more positive values through the boundary interval, suggesting substantially warmer conditions around the end-Permian extinction event and a trend toward cooler conditions after the earliest Triassic. Our observations on these strata show that the paleoenvironment and paleoclimate across the Permian-Triassic boundary in western, sub-equatorial Pangea was characterized by depositional systems that were not conducive to plant preservation. 
    more » « less
  2. Stratigraphic sections in the Bogda Mountains, NW China, provide detailed records of late Permian–Early Triassic terrestrial paleoenvironmental and paleoclimatic evolution at the paleo-mid-latitude of NE Pangea. The sections are located in the Tarlong-Taodonggou, Dalongkou, and Zhaobishan areas, ~100 km apart, and ~5000 m in total thickness. An age model was constructed using seven high-resolution U-Pb zircon CA-TIMS dates in the Tarlong-Taodonggou sections and projected to sections in two other areas to convert the litho- and cyclo-stratigraphy into a chronostratigraphy. Sediments were deposited in braided and meandering streams, and lacustrine deltaic and lakeplain-littoral environments. A cyclostratigraphy was established on the basis of repetitive environmental changes for high-order cycles, stacking patterns of high-order cycles, and long-term climatic and tectonic trends for low-order cycles (LC). Sedimentary evidence from the upper Wuchiapingian–mid Induan Wutonggou LC indicates that the climate was generally humid-subhumid and gradually became variable toward a seasonally dry condition in the early Induan. Lush vegetation had persisted across the Permo–Triassic boundary into the early Induan. A subhumid-semiarid condition prevailed during the deposition of mid Induan–lower Olenekian Jiucaiyuan and lower Olenekian Shaofanggou LCs. These three LCs are largely continuous and separated by conformities and diastems. Intra- and inter-graben stratigraphic variability is reflected by variations in thickness, depositional system, and average sedimentation rate, and results in variable spatial and temporal stratigraphic resolution. Such stratigraphic variability is mainly controlled by paleogeographic location, depocenter shift, and episodic uplift and subsidence in the source areas and catchment basin. A changeover of plant communities occurred during the early Induan, postdating the end-Permian marine mass extinction. However, riparian vegetation and upland forests were still present from the mid Induan to early Olenekian, and served as primary food source for terrestrial ecosystems, including vertebrates. Correlation of the vascular plant evolutionary history from the latest Changhsingian to early Induan in the Bogda Mountains with those reported from Australia and south China indicates a diachronous floral changeover on Pangea. The late Permian–Early Triassic litho-, cyclo- and chrono-stratigraphies, constrained by the age model, providesfoundation for future studies on the evolution of continental sedimentary, climatic, biologic, and ecological systems in the Bogda region. It also provides a means to correlate terrestrial events in the mid-paleolatitudes with marine and nonmarine records in the other parts of the world. 
    more » « less
  3. ABSTRACT The fully continental succession of the Beaufort Group, Karoo Basin, South Africa, has been used in the development of environmental models proposed for the interval that spans the contact between the Daptocephalus to Lystrosaurus Assemblage Zones, associated by some workers with the end-Permian extinction event. An aridification trend is widely accepted, yet geochemical data indicate that the majority of in situ paleosols encountered in this interval developed in waterlogged environments. To date, the presence of calcic paleosols in the latest Permian can be inferred only from the presence of calcite-cemented pedogenic nodules concentrated in fluvial channel-lag deposits. Here, we report on the first empirical evidence of in situ calcic Vertisols found in the upper Daptocephalus Assemblage Zone near Old Wapadsberg Pass, one of eight classic localities in which the vertebrate turnover is reported in the Karoo Basin. Seven discrete intervals of calcic Vertisols, exposed over a very limited lateral extent, occur in an ∼ 25 m stratigraphic interval. Estimates of mean annual temperature and mean annual precipitation are calculated from geochemical measurements of one paleosol, and these estimates indicate that the prevailing climate at the time of pedogenesis was seasonally cold and humid. Correlation with adjacent stratigraphic sections indicates that the late Permian landscape experienced poorly drained and better-drained phases, interpreted to reflect a climate that varied between episodically dry and episodically wet. In contrast to a paleoenvironmental reconstruction of unidirectional aridification from strata in the Wapadsberg Pass region, this study provides new evidence for a wetting trend towards the Daptocephalus–Lystrosaurus Assemblage-Zone boundary. 
    more » « less
  4. Old World monkeys (Cercopithecoidea) are a highly successful primate radiation, with more than 130 living species and the broadest geographic range of any extant group except humans. Although cercopithecoids are highly variable in habitat use, social behavior, and diet, a signature dental feature unites all of its extant members: bilophodonty (bi: two, loph: crest, dont: tooth), or the presence of two cross-lophs on the molars. This feature offers an adaptable Bauplan that, with small changes to its individual components, permits its members to process vastly different kinds of food. Old World monkeys diverged from apes perhaps 30 million years ago (Ma) according to molecular estimates, and the molar lophs are sometimes incompletely developed in fossil species, suggesting a mosaic origin for this key adaptation. However, critical aspects of the group’s earliest evolution remain unknown because the cercopithecoid fossil record before ∼18 Ma consists of only two isolated teeth, one from Uganda and one from Tanzania. Here we describe a primitive Old World monkey from Nakwai, Kenya, dated at ∼22 Ma, that offers direct evidence for the initial key steps in the evolution of the cercopithecoid dentition. The simple dentition and absence of bilophodonty in the Nakwai monkey indicate that the initial radiation of Old World monkeys was first characterized by a reorganization of basic molar morphology, and a reliance on cusps rather than lophs suggests frugivorous diets and perhaps hard object feeding. Bilophodonty evolved later, likely in response to the inclusion of leaves in the diet.

     
    more » « less